Next Generation Traffic Control with Connected and Automated Vehicles

Henry Liu
Department of Civil and Environmental Engineering
University of Michigan Transportation Research Institute
University of Michigan, Ann Arbor

October 20, 2016
65th Illinois Traffic Engineering and Safety Conference
Current Traffic Signal Systems

- An open loop control system.
- Majority of transportation agencies DO NOT monitor or archive traffic signal data.
- Benefit/Cost ratio of signal re-timing is about 40:1; but usually traffic signal systems will be re-timed every 2 ~ 5 years.
SMART Signal System Development
— Funded by USDOT/MnDOT (2005-2014)

Nowadays many new controllers can provide high resolution data

Event-based high resolution data

TS-1 type cabinet

MnDOT Implementation
Traffic Signal Performance Measurement

Queue Estimation

Arterial Travel Time Estimation

Commercial Cloud-based Solution

LTD Performance Measure System Architecture

LTD Database Server

LTD Performance Measure Webserver

LTD Local Server

DOT Firewall

TCP/IP

HTTP
Connected Vehicles

A connected vehicle system is based on wireless communication among vehicles of all types and the infrastructure.

The wireless communications technology could include:

- 5.9 GHz DSRC
- LTE-V and 5G cellular networks
- Other wireless technologies such as Wi-Fi, satellite, and HD radio

Source: USDOT
Connected and Automated Vehicles

Connected Vehicle
Communicates with nearby vehicles and infrastructure; Not automated

Connected Automated Vehicle
Leverages autonomous automated and connected vehicles

Autonomous Vehicle
Operates in isolation from other vehicles using internal sensors

Source: USDOT
Safety Pilot Model Deployment at Ann Arbor

• Funded by USDOT (August 2012 – May 2015)
 – Now becomes AACVTE (2015-18)
• 2843 vehicles equipped
 – Passenger cars, trucks, buses, motorcycles, and a bike
• 73 lane-miles of roadway
 – 27 roadside installations
• Collected over 110 Billion DSRC basic safety messages over 38 Million miles of driving
Vehicle-to-Infrastructure (V2I)

- 19 Intersections
- 3 Curve-related sites
- 3 Freeway sites
- All DSRC communications logged
Traffic Control with Connected Vehicles

RSE: Roadside Equipment
OBE: Onboard Equipment
CV Data Collection Devices

CV-CID

Econolite CoProcessor
Evolution to Next Generation Traffic Control Systems

Current Practice - Fixed time/actuated/adaptive Signal

Detector-free signal operation

Spatiotemporal signal control

Lane reassignment

Signal-free intersection

Infrastructure Adaption

Connected and Automated Vehicles

Connected Vehicles

Regular Vehicles
Why Detector-Free is Important?

• Many traffic signals in the US are fixed-time. To retime these signals, manual data collection has to be conducted.
• For vehicle-actuated or adaptive signals, vehicle detectors have to be maintained properly, which is also costly.
• Connected vehicles are mobile sensors. Potentially we can use connected vehicle data to evaluate traffic signal performance, retime traffic signal, or control traffic signal in real time.
Key Problem: Traffic Volume Estimation

- If traffic volumes are known, then there are known optimization methodologies to retime the traffic signals.
- How to estimate arrivals using CV data with low penetration?
Methodology

- Traffic arrivals follow cyclic patterns.
- Aggregate historical CV data for estimation.
- Assume arrivals follow time (in signal cycle) dependent Poisson process.

\[N(t) \sim \text{Poisson}(\Lambda(0, t)) \]

\[\Lambda(t_1, t_2) = \int_{t_1}^{t_2} \lambda p(t) \, dt = \lambda \int_{t_1}^{t_2} p(t) \, dt \]

Time-dependent factor

\[p(t) \propto \sum_{i=1}^{N} I\{t_{f,i} = t\} \]
Likelihood of Observations

• Observations from CV w/ stop:
 \[Y = \{n_{y,1}, n_{y,2}, \ldots n_{y,n}; P(t_{y,1}), \ldots, P(t_{y,n})\} \]

• “Censored” observations from CV w/o stop:
 \[Z = \{n_{z,1}, n_{z,2}, \ldots, n_{z,m}; P(t_{z,1}), \ldots, P(t_{z,m})\} \]

• Likelihood:
 \[
 L(Y, Z|\lambda) = \prod_{i=1}^{n} \{p(n_{y,i}|\lambda \times P(t_{y,i}))\} \prod_{j=1}^{m} \left\{ \sum_{k=0}^{n_{z,i}} p(k|\lambda \times P(t_{z,i})) \right\}
 \]

 Use Expectation Maximization (EM) for estimation.
Case Study - Int. Plymouth & Green

- Int. Plymouth & Green
- Date: 04/25/16-05/13/16
Validation of Estimation

- Observed data collected on 04/25/16 and 04/26/16

10% Overall MAPE
Transition to Next Generation Traffic Control Systems

Infrastructure Adaption

- Connected and Automated Vehicles
- Connected Vehicles
- Regular Vehicles

Current Practice - Fixed time/actuated/adaptive Signal

Detector-free signal operation

Spatial and temporal signal control

Lane reassignment

Signal-free intersection
Formulation

• Bi-level optimization:
 ✓ Upper level: signal optimization
 - Objective: minimize delay/maximize throughput
 - Determine signal parameters
 - Decide platoon length
 ✓ Lower level: trajectory control
 - Objective: minimize fuel consumption/emission
 - Generate compact platoon
 - Control platoon leading vehicle speed
Upper Level: Green Time Optimization

\[g_{\text{new}} = g_{\text{cur}} \]

\[2 = 1 + 3 \]
Lower Level: Vehicle Trajectory Control

Final state Obj:
Reach the intersection at the saturation flow speed without any stop

Vehicle trajectory Obj:
Minimize acceleration and deceleration fluctuation to reduce emission
From Temporal Control to Spatiotemporal Control
Cooperative Driving on Dedicated Road for CAV

- Platoon control
- Signal optimization

Through cars
Left-turn cars
Cooperative Driving on Dedicated Road for CAV

- Platoon control
- Signal optimization

- Through cars
 - Left-turn cars
Transition to Next Generation Traffic Control Systems

Infrastructure Adaption

- Connected and Automated Vehicles
- Connected Vehicles
- Regular Vehicles

Current Practice - Fixed time/actuated/adaptive Signal

Detector-free signal operation

Spatial and temporal signal control

Lane reassignment

Signal-free intersection
Mcross

• Mcross: Maximum Capacity inteRsection Operation Scheme for Signals
• A novel intersection operation scheme that can maximize the capacity with CAVs.
• Lanes are dynamically assigned to CAVs according to traffic volume and turning ratio, so that all lanes can be utilized
• Serve EB/WB traffic within in one phase (may contain several sub-phases)
Mcross example

Green time needed for conventional intersection:

Through phase
Left-turn phase

Through cars
Left-turn cars

Green time needed for Mcross intersection:
Mcross example

Green time split for conventional intersection:

- Through phase
- Left-turn phase

Green time needed for Mcross intersection:

- Through cars
- Left-turn cars
Mcross example

Green time split for conventional intersection:

- **Through phase**
- **Left-turn phase**

Green time needed for Mcross intersection:

- **All-in-1 phase**
Mcity

• Safe, repeatable, off-roadway test environment for AVs: simulated city
• Technology research, development, testing, and teaching
 – Construction commenced July 15 2014
 – Grand opening: July 20, 2015
Mcity
Conclusion

• Connected and automated vehicle technology will transform the surface transportation system and significantly impact on our society. It will also transform the traffic control industry.

• It brings a set of completely new research questions during the transitional process from human driven vehicles to autonomous vehicles.

• An interesting time for transportation research …
Acknowledgement

• Graduate students and post-doc researchers who are working with me on these projects:
 – Dr. Yiheng Feng, Dr. Weili Sun, Jeff Zheng, Yan Zhao, Ed Huang, Shengyin Shen, Chunhui Yu

• Research sponsors

USDOT USDOE UM MTC CAMP MnDOT
Contact Information

Henry Liu, Ph.D.
Professor, Department of Civil and Environmental Engineering,
Research Professor, Transportation Research Institute – UMTRI
University of Michigan, Ann Arbor
2320 G.G. Brown, 2350 Hayward Street
Phone: 734-764-4354
Fax: 734-764-4292
Email: henryliu@umich.edu